The characteristic strength of us as the top manufacturer of ophthalmic instrumentation in Japan is the policy to listen carefully to the clinical voices. Our unique products that reflect those practical opinions have now been well-recognised and established the structure “If you come up with a new idea, talk to Inami first” in Japan.

INNOVATIONS is a series of ophthalmic surgical instruments developed and manufactured by Inami with accumulated knowledge, experienced craftsmanship and doctors’ insatiable passion and innovation.

Cataract Surgery

M-1160
Nucleus Dividing and Separating "Cobra- Shaft" Spatula Hook, FUKUYAMA-YOSHITOMI
Designed by Fumiaki Yoshitomi, M.D., Dazaifu City Fukuoka, Japan, and Makoto Fukuyama, M.D., Ohmuta City, Fukuoka, Japan.

Newly designed and developed spatula hook for the purpose of preventing complications in PEA surgery caused by endotherial injuries resulted from divided or crushed nucleus fragments hitting to corneal endothelium (postoperative corneal edema, corneal opacity and bullous keratopathy especially caused by hard nucleus fragments beating against corneal endothelium).

This spatula hook is designed for holding irregular shaped nucleus fragments rising to the corneal endothelium down while it is dividing and manipulating nucleus body by two shafts in cobra head shape in the process of phacoemulsification and aspiration technique.

M-1160N
"Cobra- Shaft" Phaco Chopper

M-2212
2-way Nucleus Chopper, KATO
Designed by Hiroaki Kato, M.D., Ophthalmic dept. of Kyoto Prefectural University of Medicine / Baptist Eye Clinic, Kyoto, JAPAN.

Featuring a chopper on one side of the tip and a spatula hook for dividing and separating of nucleus on the other, this instrument delivers a smooth nucleus processing especially where hybrid method of phaco chop and D&C is preferred.

Only one piece of this spatula is good enough for wide range of nucleus processing.
M-2197-5.5

CCC Marker, KATOU 5.5mm
Designed by Munehiko Katou, M.D., Katou Eye Clinic, Morioka city, Iwate, JAPAN.

This marker can be inserted into anterior chamber either through scleral incision or side port in order to make marks directly onto the 5.5mm diameter circle of anterior capsule by pressure and scratch before the process of CCC. By changing the inserting part and the angle of the instrument, operator can make voluntary number of marks. For clearer marking, Trypan blue can also be used.

e.g. Insertion from side ports

Insert the marker through both side ports and mark. One marking from each side makes 4 marks.

e.g. For making more than 4 marks

Insert the marker through side ports or scleral (sclera-corneal) incision and make voluntary number of marks on the circle.

M-2177-5.5

Marker CCC SUZUKI 5.5mm
Designed by Hisaharu Suzuki, M.D., NIPPON MEDICAL SCHOOL MUSASHI KOSUGI HOSPITAL, JAPAN.

M-2177 is a useful CCC marker especially for those surgeries requires more precise CCC such as multi-focal IOL.

Unlike many other CCC markers, M-2177 can approach and mark directly onto capsule for more accurate CCC. Due to the design that can make impression, this instrument also works perfectly without ink.
M-2023

Wiper Anterior Capsule Rim
Designed and supervised by Horii Takahiro, M.D., Shizuoka city Shizuoka Hospital, Shizuoka, Japan.

M-2023 is an instrument which can be inserted through side-port and wipe cataracts material of anterior capsule rim.
Usage: After irrigation and aspiration, fill the capsule full with viscoelastic material. Then remove the residual cortex of anterior capsule with this wiper, insert a lens and make the anterior camber clean by I/A.
Glaucoma Surgery

M-2215S, M-2215R, M-2215L

Tanito ab interno Trabeculotomy Micro-hook

Designed by Dr. Masaki Tanito, M.D., PhD. (Division of Ophthalmology, Matsue Red Cross Hospital, Matsue, Japan).

Comments from Dr. Masaki Tanito, "These hooks are developed to perform trabeculotomy by ab interno approach under the observation of trabecular meshwork by using gonioprism. A straight type is suitable for temporal approach to the nasal meshwork or for superior approach to the inferior meshwork; angled–left and –right hooks are suitable for nasal approach to the temporal meshwork. The tip of the hook is enough sharp to enter directly into the Schlemm’s canal; trabecular meshwork is easily incised by moving the tip of the hook circumferentially. To avoid unintended damage to the outer wall of Schlemm’s canal, keeping the proper depth of the tip is critical. At the proper depth, metal reflex of the tip of the hook is visible through the meshwork tissue. Invisibility of the tip and any resistance during the incision indicate that the position of the hook is too deep; in such case, pull the tip to the meshwork surface to reappear the metal reflex through the meshwork and incise the meshwork at a depth with resistance free."

M-2215SS

M-2700A

Sterilization Tray for 1-3 pcs of Instruments
Vitreoretinal Surgery

M-2061SS
Rotating Scleral-Depressor, HATTORI
Designed and supervised by TAKAYUKI HATTORI, M.D.,
Department of Ophthalmology, Surugadai Nihon University hospital

By repute, almost all scleral depressors on the market are mostly insufficient in their function to prevent an occurring of incidence such as what is called "pit", iatrogenic conjunctival laceration. Another structural unsatisfactory point is in the difficulty of shifting and transferring the depressor smooth against sclera from one surgical field to the other. In order to solve these problems, this newly developed innovative scleral depressor has a unique 360 degree rotating roller at the nearly point part pressing the eyeball without giving any unfavorable effect to conjunctiva and sclera.

RB-700H-23N, RB-700H-25N
Vitreo-retinal Brush "VIT SWEEPER", OKADA: Handle

RB-40-2
Vitreo-retinal Brush "VIT SWEEPER", OKADA: Replacing brush, E.O.G. sterilized

Designed and developed by Kazuhisa Okada, M.D., Okada Eye Center, Oita, Japan.

In vitreous surgery, after the resection of vitreous body with vitreous cutter, Kenacort-A (triamcinolone acetonide) is injected into posterior segments. In case of retinal detachment surgery, Vit Sweeper is more safely applied for removing residual vitreous membranes dyed in white with Kenacort-A by its fine sweeping or wiping manipulation while a length of brush projecting out of outer sleeve of the handle can be varied by sliding knob of the handle to meet to the most suitable and desirable delicate touch with the brush point. Forty 10-0 nylon sutures consist of Vit Sweeper brush.
DS-029
Non-slip type Membrane Forceps “Membrane stripper W” 25G
Designed by Ippei Takasu, M.D., Takasu Eye Clinic, Okayama, JAPAN.

This intraocular forceps was developed especially for specialists who perform minimal incision valve surgery for complex vitreoretinopathy such as PVR.
This forceps can be combined with vitreous cutter or one more piece of the same forceps for safe and efficient process of membrane in bimanual method.

1) Combination with vitreous cutter
Holding detached part of retina with this forceps and process the vitreous cutting on the other hand.
Vitreous protruded from between the tips or side of the forceps can be cut with vitreous cutter.

2) Combination with another “Membrane stripper W”
Holding detached part of retina with one of the forceps, strip the proliferative membrane around the area with the other forceps.
Hold the proliferative membrane with two forceps from both sides to pull, tear and strip the membrane.
Pinch the subretinal strand with one forceps and place the tips of the other forceps around the strand to hold the detached retina.

MV-091
Non-Serration ILM Forceps 25G, KAORI
Designed by Kaori Morii, M.D., Ophthalmic Dept. of Asagiri Hospital, Akashi City, Hyogo, JAPAN.

Unlike other ILM forceps, this forceps does not have serration on the tips. However the sand-blast finish on the tips supports easy holding of ILM.
The tips without serration helps operators perform safer ILM removal. Therefore this instrument can be recommended to beginners.
Furthermore, the long shaft (31.7mm) can approach to eyes with long axial length.

DS-800
ILM Forceps "DUCK BEAK"
Designed by Kazuhisa Okada, M.D., Okada Eye Clinic, Oita, JAPAN.

While conventional ILM forceps have small surface of the tips that holds ILM and it has a risk of tearing, this newly designed forceps features larger and rounded surface and to prevent operators from the risk.
M-2070, M-2070CR, M-2070CL

DALK Scissors, SHIMMURA

Designed by SHIGETO SHIMMURA, M.D., Department of Ophthalmology, Keio University, Tokyo, Japan.

DALK Scissors are designed for as safer exteriorization of Descemet’s membrane as even beginners can do. It can be used in all DALK methods such as Viscodissection and Big Bubble. This instrument has less possibility of damaging Descemet’s membrane since the bottom of scissors is shaped like a spatula. Using DALK Scissors with “M-1150 DLKP Spatula, MAEDA” is also recommendable.

M-2066

Corneal Forceps for DSEK, SHIMAZAKI

Designed by JUN SHIMAZAKI M.D., Tokyo Dental College Ichikawa General Hospital, Chiba, Japan.

1. **Precise operation with small incision**
 Pipe-shaft of this instrument enables an operation without widening incision.

2. **Less stress on donor’s corneal endothelium**
 There is less possibility to damage corneal endothelial cells due to the pulling action.

3. **The gripper which realizes perfectly steady grasp**
 Fine serration which can hold endothelium firmly is fabricated on a micro-gripper.

operation of left eye: Insert the instrument into nasal incision, and then pull the donor’s endothelium from the opposite incision.

Operation of right eye: Like left eye, approach the instrument from nasal incision, Donor’s corneal endothelium is inserted into temporal incision.
External eye

M-1104
Spatula, Pterygium, MAEDA
Designed by Naoyuki Maeda, M.D., Dept. of Ophthalmology, Osaka University School of Medicine.

Newly developed spatula for detaching pterygium. After corneal epithelium surrounding pterygium is removed peripheral incision is made while spatula is inserted through incision under pterygium. Gripping and pulling up pterygium firmly with a tissue forceps the tissue is elevated and detached with the spatula.

M-2071
Rotating Meibomian Gland Forceps
Designed by OSAMU TERADA M.D., Dokkyo Medical University, Japan.

This forceps features two pulley-type rollers which can rotate 360 degrees, for reduction of stress on patients in massage of Meibomian Gland. An innovative new idea that rotating rollers clip the eyelid and squeeze the discharge out from blocked Meibomian Gland enables to reduce pain of patients drastically.

Comment by Dr. Terada

Dysfunction of Meibomian Gland can be a cause of dry eye and is said to bring on indefinite complaints. This instrument was developed to solve blocked Meibomian gland. I referred to Inami’s Rotating scleral depressor, HATTORI (M-2061) for the tip of the instrument.

M-2015
Forceps Foreign Body “SPOON”, TAKAHASHI
Designed by Daisuke Takahashi, M.D., the Close To You EST Clinic Medical Corporation, Hirosaki City, Aomori, Japan.

The bead-shaped end of these all-purpose forceps holds and cuts conjunctiva, eliminates foreign materials from it and also cuts fine thread. When they are open, they look like two spud foreign body. When they are closed, they look like beads. Therefore, they can eliminate soft foreign bodies equally as effectively as human hands can. They are especially useful to eliminate iron from corneal epithelium and conjunctival concretion from conjunctival epithelium. They can also remove foreign bodies around the epithelium at a single time. They are useful for grasping remaining tissues of the pterygium. We recommend this product to those who until now have been nervous about holding foreign bodies.
M-2211
Cilia Forceps "Q-TARO"
Designed and developed by Yasuhiro Tajima, M.D., Tajima Eye and Plastic Surgery Clinic, Yoshikawa City, Saitama, Japan.

The serration on the tips helps to drain lachrymal fluid and hold firmly even thin and slippery cilia. Since the top of the tips is rounded, this forceps can gently depress the eyelid to remove more than a piece of cilia together with their roots.

This instrument ensures the reduction of strass both from doctors and patients.

M-2187S
Chalazion Scoop Disher Forceps
Designed and developed by Yasuhiro Tajima, M.D., Tajima Eye and Plastic Surgery Clinic, Yoshikawa City, Saitama, Japan.

In the process of chalazion surgery, it is difficult to catch and remove all remaining pieces of granulation tissue with a curette and Thorpe or other kinds of forceps after removal of lipid. However, leaving those pieces of tissue can be a cause of recurrence.

This instrument has a 1.7mm x 2.0mm curette-shaped tip and its lid with a raised dot in order to grasp the remaining pieces of granulation tissue firmly and remove from the incision.

Meibomian glands massage can also be performed with the steady tip and platform of this instrument.

Usage: After scooping out the granulation tissue with curette, hold the remaining pieces firmly with this forces and remove them piece by piece.
M-2101L, M-2101M, M-2101S
Retractor GOTO-NAKAMURA 2 Nail-Hook
Designed by Hiroshi Goto, M.D., Department of Ophthalmology, Tokyo Medical University Hospital

The special spring and special clamp are attached to the two hooks that our "Retractor NAKAMURA Fish-Hook type" is modified, and it is designed to enable to fix the skin incision open for blepharoptosis surgery and in ophthalmoplasty surgery.

Dr. Hiroshi Goto comments "This is an instrument which takes advantage of the characteristics and convenience of "Retractor NAKAMURA Fish-Hook type", and is convenient especially for blepharoptosis surgery. With using this instrument, wide opening of the incision is possible. Also, we do not need the towing thread or fixing forceps anymore that used to be necessary when using conventional fish-hooks."

M-1901
Needle Holder with Scissors GOTO
Designed by Hiroshi Goto, M.D., Department of Ophthalmology, Tokyo Medical University Hospital

Because the tip is divided into a part to grip and a part to cut the thread, it is possible to cut the thread and suture with this instrument only. There is no need to change the instruments at the time of suturing. The tip is suitable for versatile use of USP 5-0 to 7-0, and is most suitable for conjunctiva, suturing of eyelid skin, and surgery for outer ocular area.

M-2191
Multi Scissors, FUKAMI
Designed and developed by Shin Fukami, M.D., Chiba Aiyukai Memorial Hospital, Nagareyama City, Chiba, Japan.

The tips of this pair of scissors can act as forceps. This 2-in-1 hybrid structure is useful for process of cutting and tying the suture especially when the surgery is performed without assistants since there is no need to change instruments during the process.
M-1405
Chalasis Marker, YOKOI
Designed by Norihiko Yokoi, M.D., Dept. of Ophthalmology, Kyoto Prefectural University of Medicine, Japan.

This marker has been developed for tear meniscus reconstruction (surgery for conjunctivochalasis): very ease of marking especially for beginner about this surgery. It makes clear of stitching and an incision target. Complete with specially designed scissors and sterilizing case.

M-1406
Chalasis Scissors, YOKOI
Designed by Norihiko Yokoi, M.D., Dept. of Ophthalmology, Kyoto Prefectural University of Medicine, Japan.

This illustration shows steps of lacrimal meniscus reconstruction surgery for simple conjunctivochalasis. At step 1 to 4, patient’s conjunctiva is divided into 3 blocks: blow part, subnasal part and Isubaural part, and then ablated in accordance of degree of conjunctivochalasis. At step 5, plica semilunaris is ablated. Finally at 6, contact point with upper laxation is fine-adjusted according to need.

Process 1 to 4
Resections of conjunctivochalasis are performed divided in 3 blocks: the inferior direction, subnasal direction and Isubauricle direction in accordance with degrees of chalasis.

Process 5
This indicates the resection towards subauricle direction.

Process 6
Fine adjustment is performed if necessary at the contact point with the hyper conjunctivochalasis.